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The main objective of this research is to discriminate secondary iron minerals 

and investigate changes caused by their relocation during mining activities using 

multispectral satellite data collected over an 11-year period. To achieve this aim, 

MF and CEM performed using USGS library spectra, field spectra and image 

spectra to identify secondary iron minerals and then the best result of the mineral 

identification stage implemented for changes detection of secondary iron 

minerals. The results of secondary iron minerals identification by MF method 

and images spectra have compatibility with the field data and laboratory analysis, 

so that the goethite is the most abundant secondary iron mineral in Darrehzar 

mine area. The change detection algorithm at the study area showed that mining 

activities and geochemical conditions cause change in the surface by transferring 

secondary iron minerals. The employed method including identifying minerals 

and detecting change of them allows users to find an effective technique for 

identifying the target material and apply it in the subtraction algorithm for change 

detection. Applying this method can be suggestions for future research in target 

change detection. 
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1. Introduction 
Mining activities cause changes in the Earth's 

surface by transferring rocks and surficial minerals 

such as ferruginous minerals in gossans (mostly 

hematite, goethite, and jarosite) and as a result of it, 

tailing damp and mine waste are produced (Atapour 

and Aftabi, 2007; Petropoulos et al., 2012; Vali et 

al., 2014) that could be detected and monitored 

using remote sensing instruments and techniques. 

Remote sensing instruments and images are usable 

for identifying reserves of ores, monitoring 

environment of mines, surveying tailings and 

identifying acid mine drainage (Paterson, 1997). 

Landsat series of satellites which have served 

remote sensing communities since the early 1970s, 

are helpful in monitoring the Earth’s surface. 

Landsat 8 was launched in 2013, provides data for 

the VNIR, and shortwave infrared (SWIR) spectral 

bands with a 30 m spatial resolution as well as a 15 

meter for panchromatic band in Operational Land 

Imager (OLI) sensor (Department of the Interior 

U.S. Geological Survey, 2016). Advanced Land 

Imager (ALI) sensor that was built to provide 

essential data for Landsat 8 mission, was 

successfully launched from Vandenberg Air Force 

Station, California on Earth observation (EO-1) 

satellite on November 21, 2000 (Beck, 2003; 

Lencioni et al., 2005). This sensor, which is very 

similar with Landsat especially in the visible 

portion, contains nine multispectral bands with 30 

m spatial resolution (in VNIR and SWIR portions) 

(Mendenhall et al., 1998). 

Various spectral techniques, such as Matched 

Filtering (MF), Constrained Energy Minimization 

(CEM) have been used to detect clay minerals 

bearing zones and Fe-minerals bearing area in order 

to map mineralized altered areas by advanced 

spaceborne thermal emission and reflection 

radiometer (ASTER) and Landsat multispectral 

images (Rowan et al, 2003; Zhang et al, 2007; Gabr 

et al, 2010; Ghulam et al, 2010; Sadeghi, et al, 

2013; Alimohammadi et al, 2015; Beiranvand Pour 

et al, 2015; Mokhtari and Seifi, 2021; Seifi et al., 

2021). Many researchers have been involved 

implementing statistical (principal component 

analysis (PCA)) and spectral (mixture tuned 

matched filtering (MTMF) and linear spectral 

unmixing (LSU)) on ASTER, Landsat and 

Hyperion data for mapping ferruginous caps 

(gossans) and alterations zones in Sarcheshmeh and 

Darrehzar mines (Ranjbar et al, 2004; Beiranvand 

Pour et al, 2013; Hosseinjani Zadeh et al, 2014a; 

Hosseinjani Zadeh et al, 2014b; Abedi et al, 2015). 

Many researchers have been involved in 

determining changes in mining areas in the Jharia 

coalfield (India), the central Appalachians, the 

Rutenburg mining region, Amazon, Ghana, the 

Greek island of Milos, Turkey and Germany using 

time series of Landsat, IRS, Quickbird and 

Worldview images (Prakash and Gupta, 1998; 

Ololade et al., 2008; Townsend et al., 2009; 

Schroeter and Gläβer, 2011; Petropoulos et al., 

2012; Lobo et al., 2014; Yucel et al., 2014; 

Basommi et al., 2015). However these 

multispectral images are mainly used for mapping 

land use and land cover in mining areas (Prakash 

and Gupta, 1998; Ololade et al., 2008; Basommi et 

al., 2015), less attention is paid for detection of 

changes in minerals exposure for monitoring 

tailings. On the other hand, even though different 

algorithms were used for change detection, rare 

publications are available for mapping minerals 

through known spectral based algorithm such as 

spectral angle mapper (SAM) and matched filtering 

(MF) (Kruse et al., 1993; Harsanyi and Chang, 

1994; Boardman et al., 1995; Wen and Yang, 2009; 

Valizadeh Kamran and Khorrami, 2018). However, 

many researchers reported the importance of MF 

and CEM in mineral identification (Rowan et al., 

2003; Zhang et al., 2007; Gabr et al., 2010; Sadeghi 

et al., 2013; Alimohammadi et al., 2015; Seifi et al., 

2016; Mokhtari and Seifi, 2021; Seifi et al., 2021), 

its importance for discrimination of change 

detection is paid less attention. 
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Although many remote sensing studies 

conducted in the Darrehzar porphyry copper mine, 

in Kerman copper belt (KCB), south east of Iran 

(Ranjbar et al., 2004; Beiranvand Pour et al., 2013; 

Shahriari et al., 2013; Hosseinjani Zadeh et al., 

2014a; Hosseinjani Zadeh et al., 2014b; Abedi et 

al., 2015; Seifi et al., 2016; Seifi et al., 2017; Seifi 

et al., 2019a; Seifi et al., 2019b), there are no 

investigations focuses on changes created by ore 

materials relocation using satellite images in this 

area. Hence the main objective of this research is to 

investigate changes created due to mining activities 

and discriminate iron minerals variation such as 

hematite, jarosite and goethite through the 

employed MF and CEM subpixel spectral 

techniques using multispectral satellite data at the 

Darrehzar mine during a 11-year period. For this 

purpose, MF and CEM are performing using United 

States Geological Survey (USGS) library spectra, 

field spectra and image spectra and then change 

detection of secondary iron minerals is going to 

implement according to the best result of the 

following stage. 

 

2.Study Area 
The Darrehzar porphyry copper deposit is 

located 80 km northeast of Sirjan in Kerman 

province and eight km south of well-known 

Sarcheshmeh porphyry copper deposit. This area is 

situated in the Urumieh–Dokhtar magmatic belt of 

Iran (Sahand- Bazman) and is a part of the Kerman 

copper belt, namely Dehaj-Sarduiyeh magmatic arc 

(Figure 1). 

In the years 1969 and 1970, a former 

Yugoslavian geological team conducted an initial 

exploration investigation in the Darrehzar region on 

behalf of the Iranian Geological Survey. They 

carried out geological, geophysical, and 

geochemical investigations before drilling 24 wells 

and two tunnels for exploration. On the basis of 

these facts, they calculated the Cu/Mo reserve. 

Additional drilling and new exploration activities 

started in 1993, and overburden removal efforts 

began in 1995. In order to produce the necessary 

ore for semi-industrial bioheap leaching studies, 

extraction operations have been carried out since 

May 2004 for a period of one year. Due to the 

presence of sulfide-bearing minerals, water 

infiltration, and oxidant bacteria at the deposit site, 

acid mine drainage was produced (Moazzen zadeh 

et al., 2006). Official exploration efforts for ore 

reserve estimation and mine design began in 2006, 

and an operational license was then secured from 

the Kerman province's Industries and Mines 

Organization in 2007 (Yazdanpanah, 2011; 

Hosseinjani Zadeh, 2013; Parsapoor, 2014).
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Figure 1. A) A structural-sedimentary map of Iran (modified after Moeen Vaziri, 2004), B) geological map of Dehaj-

Sarduyeh (modified after Nateghi and Hezarkhani, 2013), and C) geological map of the Darrehzar porphyry copper 

deposit (modified after Alizadeh Sevari and Hezarkhani, 2014). 
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The Darrehzar porphyry is situated in a diorite 

diorite–quartz pluton of Oligocene–Miocene age 

which intrudes an Eocene Volcanic–Sedimentary 

complex consisted mainly of volcaniclastics, 

andesite, trachyandesite and sedimentary rocks. 

Hydrothermally altered rocks are highly fractured, 

and supergene alteration has produced extensive 

limonite and leaching of sulfide, giving a 

characteristic reddish or yellowish color to the 

altered rocks (Geological Survey of Iran, 1973). 

Propylitic and phyllic alterations are dominant in 

surface rocks with sporadic small areas of argillic 

alteration. Propylitic alteration is well developed in 

the area and extends a few hundred meters around 

the central phyllic zone. The phyllic alteration 

persists below the oxidation zone and is 

characterized by enrichments in Si, Al and K, and 

depletions in Na, Ca, Mg and Mn (Ranjbar et al., 

2001). Potassic alteration is not observed on 

surface, possibly as a result of a surface related 

weathering or intense phyllic overprint (Geological 

Survey of Iran, 1973). 

 

3.Materials and Methods 

3.1.Satellite data 

In order to investigate the mineral identification 

and change detection in Darrehzar area, images 

were selected in a manner to cover two periods in 

summer (normally AMD observed in summer) 

(Guo et al., 2013; Navarro Torres et al., 2011); a) 

2004 (before official exploration activities (2005) 

and after reported acid mine drainage pollution 

(2003) (Hosseinjani Zadeh, 2013; Moazzen zadeh 

et al., 2006)) and b) 2015 (before the first 

implemented field investigation by authors at the 

study area(. The image of 2015 was related to OLI 

sensor of Landsat 8 which has been acquired on the 

9 August 2015 and was downloaded from the 

USGS website. Unfortunately, there was no 

suitable Landsat (ETM + and TM) images in 2004 

for the study area. Therefore, the ALI image, which 

is similar to Landsat in terms of sensor design, 

platforms orbital characteristics, spatial and 

spectral resolution, was chosen (Department of the 

Interior U.S. Geological Survey, 2016). The ALI 

image, which is contemporary in season with the 

OLI, was acquired on the 26 July 2004 from USGS 

website. 

 

3.2. Field data 

Field reconnaissance was conducted for 

collecting rock samples at the study area in 2016. 

Fresh/weathered and representative oxidized rocks 

samples were collected from different parts of 

mining pit and tailing damps through a random 

punctual sampling and their positioning were 

recorded by global position system (GPS) Oregon 

650. These samples were collected from different 

areas of the mining pit and waste dumps of the 

Darrehzar mine (Figure 2). 
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Figure 2. Location of rock samples which were plotted on the color composite of OLI image (each number on the figure 

indicate sample number such as; 1: Da1, 2: Da2, 3: Da3, 4: Da4, 5: Da5, 6: Da6, 7: Da7, 8: Da8, 9: Da9, 10: Da10, 11: 

Da12, 12: Da21, 13: Da24, 14: Da26, 15: Da27, 16: Da28, 17: SD, 18: SD1, 19: NED, 20: NED1, 21: NED2, 22: ED1, 

23:ED2, 24: ED3, 25:ED4). 

 

Collected samples were sealed in clean 

polythene bags and kept for further analysis 

(spectroscopy studies and X-ray diffraction). 

Spectroscopy of rock samples were carried out in a 

laboratory by an analytical spectral device (ASD) 

FieldSpec®3 spectroradiometer as well as spectral 

processing and mineral recognition were conducted 

using PIMA View V.3.1., Specmin-PRO V.3.1, and 

ENVI 5.3® software. The average percentage of 

minerals in results of PIMA View and Specmin-

PRO for the spectra of each sample was considered 

as the final percentages for minerals in samples. 

The XRD spectra of powdered samples with the 

best spectral features were obtained with a Philips 

PW 1800 diffractrometer using Cu–Kα radiation 

(Kα = 1.542 Å), operating at 40 kV and beam 

current of 30 mA. Moreover, previous researches 

(Abdolzadeh, 2005; Atapour and Aftabi, 2007; 

Keshavarzi, 2006) in the study area were used to 

validate results of image processing of ALI data 

(2004). 

 

3.3.Pre-processing: 

Applying atmospheric correction algorithms is 

a crucial step in the pre-processing process because 

atmospheric water vapor and particles cause noise 

in the digital values of the pixels in remotely sensed 

images (Hosseinjani Zadeh, 2013). Therefore, the 

ALI and OLI data were corrected using the Fast 

Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) method. The implemented 

atmospheric correction removes atmospheric 

effects on image pixels and retrieves spectral 

reflectance of Earth`s surface from multispectral 

radiance images (ITT Visual Information Solutions, 

2008). So level 1T of ALI and OLI images were 

downloaded from the USGS website, they 

registered and were geometrically accurate by 



A. Seifi, M. Hosseinjanizadeh,·H. Ranjbar, M. Honarmand                         Journal of Geological Remote Sensing 2023 1(1);38-55  

 

44 
 

1:25000 topographic map and stream layer of study 

area. 

 

3.4.Endmember extraction: 

In order to identify secondary iron minerals 

including; hematite, goethite and jarosite, and 

detect changes for them in aforementioned period, 

the MF and CEM algorithms were implemented on 

ALI and OLI images separately using spectra of 

these minerals from USGS spectral library. 

Whereas there are many spectra for each mineral in 

the USGS spectral library hematite2, goethite3, and 

jarosite1 spectra were chosen according to the 

research of Hosseinjanizadeh et al. (2014b) (Figure 

3A). 

 

Figure 3. The USGS, field and image spectra of secondary iron minerals such as jarosite, hematite and goethite: A) The 

USGS and field spectra; B) The OLI and ALI image spectra. 

 

As mentioned above, minerals in rocks samples 

were identified by spectroscopy measurement 

using an ASD FieldSpec®3 spectroradiometer in a 

laboratory. So that samples are mixtures of different 

minerals and less abundant minerals may not be 

observed in one single measurement, multiple 

spectra were acquired at the laboratory from rocks 

samples taking into account (95 spectra from 26 
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samples). The spectral processing and mineral 

recognition were carried out by PIMA View V.3.1., 

Specmin-PRO V.3.1, and ENVI 5.3® software. 

Goethite, hematite and jarosite in rock samples 

are identified using absorption features in ASD 

spectra because of crystal field transitions of 

ferric/ferrous iron in Fe-minerals, OH stretch in 

secondary iron minerals and Fe-OH stretch in 

jarosite (Zabcic 2008; Hosseinjanizadeh et al. 

2014b; Seif et al. 2017). At the present study, 

absorption features of crystal field transitions in 

ferric/ferrous iron (0.62-0.63 and 0.90-0.93 µm in 

goethite, and 0.87 µm in hematite) and OH stretch 

(1.41 and 1.92 µm in hematite, and 1.42 and 1.93 

µm in goethite) combinations were used for 

identifying of goethite and hematite in rock 

samples. Absorption features associated with 

crystal field transitions of ferric/ferrous iron (0.44 

µm in jarosite) and Fe-OH (2.26 µm in jarosite) 

were considered as jarosite (Figure 3A). Moreover, 

Al-OH absorption feature (2.20 µm) observed in 

ASD spectra could be because of the presence of 

clay minerals in measured samples 

(Hosseinjanizadeh et al., 2014b, Seifi et al., 2019a). 

For pure spectra extraction of images’ pixels, at 

first, inherent dimensionality of image data was 

determined using Minimum Noise Fraction (MNF) 

rotation to separate noise in the data, and to 

decrease the computational requirements for next 

processing. Then Pixel Purity Index (PPI) were 

performed to segregate the purest pixels in the 

Landsat 8 and ALI multispectral images (Research 

Systems Inc., 2004). Corresponding spectra of 

bright pixels in the PPI image and their similarity 

with resampled spectra of spectral library were 

used for extracting the purest spectra..Moreover, 

Sequential Maximum Angle Convex Cone 

(SMACC) spectral tool was carried out to find 

spectral image endmembers and to help the pure 

spectra extraction process (Research Systems Inc., 

2004). 

There are absorption features associated with 

crystal field transitions of ferric/ferrous iron (0.43-

0.48, 0.50-0.67 and 0.85-0.94 µm) in band 2 ALI 

and OLI for jarosite, in band 3 OLI for hematite, 

and in band 5 OLI and band 6 ALI for jarosit, 

goethite and hematite. As well as, ALI and OLI 

spectra presented absorption characteristics of OH 

stretch (1.9 µm) in band 9 ALI and band 7 OLI for 

three mentioned minerals (Figure 3B). 

 

3.5.Mineral Identification: 

Goethite was chosen for selecting the best 

method because it is the most stable Fe-mineral in 

acid mine drainage participates and gossans in 

mining area (Atapour and Aftabi, 2007; Singh 

et al., 1999). In the present research, CEM and MF 

subpixel spectral techniques were implemented 

using goethite spectrum of USGS spectral library, 

OLI image goethite spectrum, and field goethite 

spectrum on Landsat 8 (OLI) data. MF technique is 

a procedure implements a partial spectra unmixing 

to evaluate the user-defined endmembers 

abundance from a set of reference spectra for 

mapping the surface minerals. In fact, this method 

minimizes the response of the composite unknown 

background by projecting vector of each pixel onto 

a subspace that is orthogonal to the background 

spectra and then maximizes the response of the 

known end-member by comparing the residual 

pixels to each of the reference spectra and finally 

matches the known signature (Harsanyi et al, 1994; 

Boardman et al, 1995; Rowan et al, 2003). CEM 

technique is a performance of matched filtering 

methods in the hyperspectral analysis context. 

CEM applies a finite impulse response filter (a 

linear operator) to pass through the desired target 

while minimizing output energy of background. A 

correlation or covariance matrix is used for 

characterization of the component unknown 

background and increased the contrast between the 

target and background spectra (Farrand and 

Harsanyi, 1994; Farrand and Harsanyi, 1997; 
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Resmini et al, 1997; Settle, 2002; ENVI 5.3 online 

help). Digital Numbers (DNs) of CEM and MF 

image pixels present relative percentage of interest 

materials per pixel, as a result they were classified 

in three groups, 5% - 20% (low value), 20% - 50% 

(medium value), and 50% - 100% (high value) 

according to ASD and XRD data in the research of 

Seifi et al. (2019a). The best results of CEM and 

MF subpixel spectral techniques corresponding the 

ASD data was chosen as the best method for next 

stage, mineral identification. The best method was 

used to identify secondary iron minerals 

containing, hematite, goethite, and jarosite by ALI 

and OLI data. The results of secondary iron 

minerals identification were classified also in three 

groups, 5% - 20% (low value), 20% - 50% (medium 

value), and 50% - 100% (high value). The results of 

OLI image validated by ASD FieldSpec®3 

spectroradiometer data (Table 1). The results of 

ALI image validated by information in previous 

researches (Abdolzadeh, 2005; Atapour and Aftabi, 

2007; Keshavarzi, 2006) in study area. 

 

3.6.Change Detection 

The employed method for change detection of 

secondary iron minerals which is practical to 

identify change of the target material includes three 

phases, method selection, target identification and 

change detection. The method allows users to find 

an effective technique for detecting the target 

material and apply it in the subtraction algorithm 

for change detection. The gray-scale MF images of 

following stage were used for detecting hematite, 

goethite and jarosite changes in an 11-year period 

between 2004 (ALI data) and 2015 (OLI data). For 

this purpose, differences between MF images of 

secondary Fe-minerals are computed by subtracting 

the MF image of 2004 from MF image of 2015 and 

classes are determined by applying the certain 

value of statistical threshold. In order to select 

threshold in subtraction algorithm, a no change 

class should be surrounded by an equal number of 

positive and negative classes between -1 and +1 

(Research System Inc., 2004). So that, the same 

values of statistical data (0.2 and 0.5) for 

classifying secondary iron minerals images in 

following stage were used as statistical threshold.  
 

4.Results and Discussion 
 

4.1.Method Selection 

Iron minerals changes created by mining 

activities investigated through the employed MF 

and CEM subpixel spectral techniques using 

multispectral satellite data at the Darrehzar mine 

during a 11-year period. Goethite was used to select 

the best method for next stage, mineral 

identification, because it is one of the most stable 

secondary iron minerals in a wide range of pH 

(Seifi et al., 2019a; Singh et al., 1999). Goethite 

was detected using MF and CEM methods with the 

help of USGS library, image and Field spectra to 

choose the best method for identifying secondary 

iron minerals. The results of goethite identification 

were classified into three categories, 5%-20% (low 

value), 20%-50% (medium value), and 50%-100% 

(high value). Goethite is only found in the mining 

area, according to the results of the MF method's 

detection by the USGS spectral library and Field 

spectra, therefore only 5 to 20% of the desired 

pixels contain goethite. (Figure 4A and C). 

Additionally, the results of goethite identification 

using the CEM method by the USGS spectrum 

library and Field spectra show that this mineral is 

found in the mining area with a medium value (20 

to 50%) and in the vicinity of the mine with a low 

value (5 to 20%). (Figure 4D and F). In the results 

of detecting goethite using MF and CEM methods 

by image spectra, this mineral is identified in the 

mining area and also around the mine with low (5 

to 20%), medium (20 to 50%) and high values (50 

to 100%). (Figure 4B and E). In the results of the 

MF method by the OLI image spectrum are 

presented that there is goethite in the mining area 
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with low, medium and high values, so that the 

highest value of goethite is located in the mine pit, 

and the tailings dumps show medium and low 

values (Figure 4B). The results of the CEM method 

by the OLI image spectrum reveal the low, medium 

and high values of goethite, so that there is the high 

value of goethite in the mining pit, and the medium 

and low values of goethite are situated in a wide 

area around the mine (Figure 4E). Among the 

results of the six methods, the result of the MF 

method by image spectra has compatibility with the 

field data and laboratory analysis, so that the 

goethite mineral is observed in most of the 

collected samples (Figure 2 and Table 1).  

 

 

 

Figure 4. Spatial distribution maps of Goethite in the study area created by A) the MF method and USGS spectrum; B) 

the MF method and OLI image spectrum; C) the MF method and field spectrum; D) the CEM method and USGS spectrum; 

E) the CEM method and OLI image spectrum; F) the CEM method and field spectrum. 

 

 

4.2.Mineral Identification 

Secondary iron minerals containing goethite, 

hematite and jarosite were identified by MF method 

using images spectra. The spectra of 

aforementioned minerals were extracted from ALI 

and OLI satellite images (Figure 3B) and used for 

detecting secondary iron minerals. Goethite is the 

most abundant secondary iron mineral in Darehazar 
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mine area, and it presents a few changes between 

2004 to 2015 (Figure 5A and D). Hematite is 

mainly detected with moderate (20-50%) and high 

(50-100%) values along the Darrehzar River, which 

intersects the Darrehzar mine into two parts, in 

2004 image (ALI) (Figure 5B). But it is identified 

by low value (5 to 20%) in the mine area and also 

by medium value (20 to 50%) in some central parts 

of the mine in the OLI image (2015) (Figure 5E). 

Jarosite is detected using the ALI satellite image 

(2004) in the mining area with low (5 to 20%), 

medium (20 to 50%) and high (50 to 100%) values, 

so that the low amounts of jarosite is detected in a 

wider area than the medium and high values in 

Darrehzar mine (Figure 5C). Moreover, this 

mineral is identified with medium and high values 

in a more widespread area than the low value of 

jarosite in the Darrehzar mine in the 2015 image 

(OLI), and mostly these values correspond to the pit 

of Darrehzar mine (Figure 5F).  

Figure 5. A) Result of the MF method and ALI image spectrum for goethite identification; B) Result of the MF method 

and ALI image spectrum for hematite identification; C) Result of the MF method and ALI image spectrum for jarosite 

identification; D) Result of the MF method and OLI image spectrum for goethite identification; E) Result of the MF 

method and OLI image spectrum for hematite identification; F) Result of the MF method and OLI image spectrum for 

jarosite identification. 

Field observations and laboratory analysis of 

collected samples from the mine confirm the image 

processing results. 

Previous studies approve the results of ALI 

images processing so that Abdolzadeh (2005) 

reported that there are jarosite, goethite, hematite 

and limonite in oxidation zone of Darrehzar mine 

as well as Atapour and Aftabi (2007) mentioned 

that there is a range of goethite > hematite > jarosite 

in gossan and leached zone of Darrehzar. 
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Fortheremore, ICP-MS results on by Keshavarzi 

(2006) revealed high amounts of iron (Fe) in 

collected sediments of Darrehzar river. 

The spectral analysis of collected samples 

spectra (taken from Darrehzar mine in 2015) also 

present the following results: 

 Goethite is the most abundant mineral present in 

the collected samples so that there is it in most 

of the collected samples with high values (50 to 

100%). 

 The samples taken from the mining pit show 

medium (20 to 50%) and high (50 to 100%) 

values of hematite, while collected samples 

from the tailing dumps present a low value (5 to 

20%) of that. 

 Jarosite is presented in the samples taken from 

Darrehzar mine area with low value (5 to 20%) 

(Figure 2 and Table 1). 

The X-ray diffraction from rock samples 

correspond to the location of discriminated areas 

showed existence of jarosite and goethite specially 

inside the Darrehzar mine. These minerals are 

observed mainly with clay minerals in XRD 

analysis from rock samples (Seifi et al., 2019a). 
 

 

Table 1: Characteristics of rock samples measured by ASD FieldSpec®3 spectroradiometer (The final percentage for 

minerals in the table were calculated by average percentage of minerals in results of PIMA View and Specmin-PRO). 

 

  Mining Pit 

  

  Da1 Da2 Da3 Da4 Da5 Da6 Da21 Da24 

Goethite 56.08 0 47.43 62.72 58.09 27.37 41.83 26.03 

Hematite 0.59 0 0 0 41.91 35.43 58.17 50.92 

Jarosite 0 0 0 12.79 0 6.37 0 0 

Clay 43.33 100 52.57 24.49 0 30.83 0 23.05 

  

  Western Dump 

  

  
Southern 

Dump 

  

  Da7 Da8 Da9 Da10 Da12   SD SD1 

Goethite 80.31 84.66 77.37 39.51 0 Goethite 77.81 82.1 

Hematite 6.55 9.46 0 12.01 70.74 Hematite 3.16 2.66 

Jarosite 0 0 0 0 0 Jarosite 6.16 0.48 

Clay 13.14 5.88 22.63 48.48 29.26 Clay 12.87 14.76 

  

  Eastern Dump 

  Da26 Da27 Da28 ED1 ED2 ED3 ED4 NED NED1 NED2 

Goethite 72.07 65.54 75.69 72.75 59.39 78.91 61.75 53.52 68.29 51.18 

Hematite 16.94 0 3.38 4.17 0 21.09 0 7.66 7.96 4.31 

Jarosite 10.99 0 9.52 0 0 0 0 23.77 14.22 29.04 

Clay 0 34.46 11.41 23.08 40.61 0 38.25 15.05 9.53 15.47 

4.3.Change Detection 

Subtraction Algorithm was implemented on the 

results of the previous step, mineral identification, 

in order to detect the changes of secondary iron 

minerals such as goethite, hematite and jarosite, as 

well as statistical threshold (-0.5, -0.2, 0, 0.2, 0.5) 

was used to achieve better results. The result of 

change detection is based on the brightness of 

pixels in the initial and final states of images as 

ascending and descending of secondary iron 
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minerals (jarosite, goethite, and hematite) in the 

mine site during an 11-year period in red and in 

blue, respectively. Implementation of change 

detection algorithm at the area revealed that mining 

activities and geochemical conditions cause change 

in the surface by transferring minerals such as 

hematite, goethite, and jarosite. Goethite presents 

both increase and decrease in different areas of the 

mining pit and western, eastern, and southern 

tailing dumps, so that it shows the displacement of 

the goethite in the mine (Figure 6A). Hematite 

mainly shows a decrease in the area of mine but 

increases sporadically in the mining pit and the 

paths leading to the waste dumps (Figure 6B). 

Jarosite increases mostly in mining pit and in small 

parts of western, eastern and southern waste dumps. 

The Darrehzar river is the most important place 

where jarosite is increased because the waste water 

reacts with pyrite and minerals such as jarosite are 

deposited. It should be mentioned that the surface 

water lake where the mine's acidic waters enter, is 

situated in the Darrehzar mine (Figure 6C). 

According to the history of the mine, the inactive 

western dump has been created and expanded 

during 1993 to 2010. This dump which is the oldest 

actually coincides with the exploration operations 

in 1993 (Yazdanpanah, 2011). The inactive eastern 

dump has been generated during 2010 to 2015. 

Furthermore, the active southern waste dump 

created in 2010 (unpublished data from the 

Darrehzar mine). 

 

 

Figure 6. A) Result of the goethite change detection; B) Result of the hematite change detection; C) Result of the jarosite 

change detection. (Blue: decrease in jarosite, goethite and hematite; Red: increase in jarosite, goethite and hematite). 

 

  

5.Conclusion 
The employed method is practical to identify 

change of the secondary iron minerals includes 

three phases, method selection, mineral 

identification and change detection. Sub pixel 

methods determine approximate values of 

minerals in image’s pixels. Among the results of 

the six methods, MF and CEM using USGS 

library, image and Field spectra, the result of the 

MF method and image spectra is the best method 

for secondary iron minerals identification. The 

results of secondary iron minerals identification 
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by MF method using images spectra have 

compatibility with the field data and laboratory 

analysis, so that the goethite is the most abundant 

secondary iron mineral in Darehazar mine area. 

Identifying target and detecting change of it allow 

users to find an effective technique for identifying 

the target material and apply it in the subtraction 

algorithm for change detection. The subtraction 

algorithm was performed on the results of the 

mineral identification stage for changes detection 

of secondary iron minerals and statistical 

threshold was used. Implementation of change 

detection algorithm at the area revealed that 

mining activities and geochemical conditions 

cause change in the surface by transferring 

minerals such as hematite, goethite, and jarosite. 

Applying this method can be suggestions for 

future research in material change detection. 

 

6.References 
Abdolzadeh M. Geochemical, Mineralization and 

Alteration Study of Darrehzar Copper Deposit 

(Kerman) [Dissertation]. Shiraz: Shiraz 

University.; 2005. 

Abedi M, Norouzi GH, Fathianpour N. Mineral 

potential mapping in Central Iran using fuzzy 

ordered weighted averaging method. 

Geophysical Prospecting 2015; 63: 461–477. 

Afify HA. Evaluation of change detection 

techniques for monitoring land-cover 

changes: A case study in new Burg El-Arab 

area. Alexandria Engineering Journal 2011; 

50: 187–195. 

Aleksandrowicz S, Turlej K, Lewiński S, 

Bochenek Z. Change Detection Algorithm for 

the Production of Land Cover Change Maps 

over the European Union Countries. Remote 

Sensing 2014; 6: 5976-5994. 

Alimohammadi M, Alirezaei S, Kontak DJ. 

Application of ASTER data for exploration of 

porphyry copper deposits: A case study of 

Daraloo–Sarmeshk area, southern part of the 

Kerman copper belt, Iran. Ore Geology 

Reviews 2015; 70: 290–304. 

Alizadeh Sevari B, Hezarkhani A. Hydrothermal 

evolution of Darrehzar porphyry copper 

deposit, Iran: evidence from fluid inclusions. 

Arab J. Geosci. 2014; 7: 1463–1477. 

Atapour H, Aftabi A. The geochemistry of 

gossans associated with Sarcheshmeh 

porphyry copper deposit, Rafsanjan, Kerman, 

Iran: Implications for exploration and the 

environment. Journal of Geochemical 

Exploration 2007; 93: 47-65. 

Basommi L, Guan Q, Cheng D. Exploring Land 

use and Land cover change in the mining areas 

of Wa East District, Ghana using Satellite 

Imagery. Open Geosci. 2015; 1: 618–626. 

Beck R. EO-1 User Guide. Version 2.3. Ohio: 

University of Cincinnati; 2003. 

Beiranvand Pour A, Hashim M, Genderen J. 

Detection of hydrothermal alteration zones in 

a tropical region using satellite remote sensing 

data: Bau goldfield, Sarawak, Malaysia. Ore 

Geology Reviews 2013; 54: 181–196. 

Beiranvand Pour A, Hashim M. Hydrothermal 

alteration mapping from Landsat-8 data, 

SarCheshmeh copper mining district, south-

eastern Islamic Republic of Iran. Journal of 

Taibah University for Science 2015; 9: 155–

166. 

Boardman JW, Kruse FA, Green RO. Mapping 

target signatures via partial unmixing of 

AVIRIS data. In: Proceedings of the Fifth JPL 

Airborne Earth Science Workshop; 1995; 

Pasadena, California. 

Department of the Interior U.S. Geological 

Survey. Landsat 8 (L8) Data Users Handbook. 

Version 2.0. Dakota: Earth Resources 

Observation and Science (EROS) Center; 

2016. 

ENVI 5.3 online help. Available at: file: 

/Exelis/ENVI53/classic/help/ENVI3WHelp.h

tm. 

file:///C:/Program%20Files/Exelis/ENVI53/classic/help/ENVI3WHelp.htm
file:///C:/Program%20Files/Exelis/ENVI53/classic/help/ENVI3WHelp.htm
file:///C:/Program%20Files/Exelis/ENVI53/classic/help/ENVI3WHelp.htm


A. Seifi, M. Hosseinjanizadeh,·H. Ranjbar, M. Honarmand                         Journal of Geological Remote Sensing 2023 1(1);38-55  

 

52 
 

Farrand WH, Harsanyi JC. Mapping distributed 

geological and botanical targets through 

constrained energy minimization. 

Proceedings, 10th Thematic Conference on 

Geological Remote Sensing, San Antonio, 

TX, 9–12 May 1994, I-419–I-429. 

Farrand WH, Harsanyi JC. Mapping the 

distribution of mine tailings in the Coeur 

d'Alene River Valley, Idaho, through the use 

of a constrained energy minimization 

technique. Remote Sens. Environ. 1997; 59 

(1): 64–76. 

Gabr S, Ghulam A, Kusky T. Detecting areas of 

high-potential gold mineralization using 

ASTER data. Ore Geology Reviews 2010; 38: 

59–69.  

Geological Survey of Iran. Exploration for ore 

deposit in Kerman Region. Report Y/53. 

Tehran: Geological Survey of Iran; 1973. 

Ghulam A, Amer R, M. Kusky T. Mineral 

Exploration and Alteration Zone Mapping in 

Eastern Desert of Egypt Using ASTER Data. 

In: ASPRS 2010 Annual Conference; 2010 

April 26-30; San Diego, California. 

Guo Y, Huang P,  Zhang W, Yuan X, Fan F, 

Wang H, Liu J, Wang Z. Leaching of heavy 

metals from Dexing copper mine tailings 

pond. Trans. Nonferrous Met. Soc. China 

2013; 23: 3068− 3075. 

Harsanyi JC, Chang CI. Hyperspectral Image 

Classification and Dimensionality Reduction: 

An Orthogonal Subspace Projection 

Approach. IEEE transactions on geoscience 

and remote sensing 1994; 32(4): 779-785. 

Harsanyi JC, Farrand WH, Chang CI. Detection 

of subpixel signatures in hyperspectral image 

sequences. Proceedings of 1994 ASPRS 

Annual Conference, Reno, Nevada 1994; 

236–247. 

Hosseinjani Zadeh, M. Evaluation of relationship 

between alteration and mineralization using 

spectral analysis and processing of 

multispectral and hyperspectral satellite data, 

case study middle part Dehaj-Sarduyeh, 

Kerman, South-East Iran [Dissertation]. 

Shiraz: Shiraz University; 2013. 

Hosseinjani Zadeh M, Tangestani MH, Velasco 

Roldan F, Yusta I. Mineral Exploration and 

Alteration Zone Mapping Using Mixture 

Tuned Matched Filtering Approach on 

ASTER Data at the Central Part of Dehaj-

Sarduiyeh Copper Belt, SE Iran. IEEE Journal 

of Selected Topics in Applied Earth 

Observations and Remote Sensing 2014a; 

7(1): 284-289. 

Hosseinjani Zadeh MH, Tangestani M, Roldan 

FV, Yusta I. Sub-pixel mineral mapping of a 

porphyry copper belt using EO-1 Hyperion 

data. Advances in Space Research 2014b; 53: 

440–451.  

Im J, Rhee J, Jensen JR, Hodgson ME. An 

automated binary change detection model 

using a calibration approach. Remote Sensing 

of Environment 2007; 106: 89–105. 

ITT Visual Information Solutions. FLAASH 

Module User’s Guide. Version 4.5.; 2008. 

Keshavarzi B. Study of acid mine drainage in 

Darrehzar copper deposit and its 

environmental impacts [Dissertation]. 

Kerman: Shahid Bahonar University; 2006. 

Kruse FA, Lefkoff AB, Boardman JW, 

Heidebrecht KB, Shapiro AT, Barloon PJ, 

Goetz AFH. The Spectral Image Processing 

System (SIPS) – Interactive Visualization and 

Analysis of Imaging Spectrometer Data. 

Remote Sensing of Environment 1993; 44: 

145–163. 

Lencioni DE, Hearn DR, Digenis CJ, Mendenhall 

JA, Bicknell WE. The EO-1 Advanced Land 

Imager: An Overview. Lincoln Laboratory 

Journal 2005; 15: 165-180. 

Lobo FL, Costa MPF, Novo, EMLM. Time-series 

analysis of Landsat-MSS/TM/OLI images 

over Amazonian waters impacted by gold 



A. Seifi, M. Hosseinjanizadeh,·H. Ranjbar, M. Honarmand                         Journal of Geological Remote Sensing 2023 1(1);38-55  

 

53 
 

mining activities. Remote Sensing of 

Environment 2014; xxx: 1-15. 

Lu D, Mausel P, Brondi`zio E, Moran E. Change 

detection techniques. International Journal of 

Remote Sensing 2004; 25(12): 2365–2407. 

Mendenhall JA, Lencioni DE, Hearn DR, Parker 

AC. EO-1 Advanced Land Imager in-flight 

calibration. Proc. SPIE 1998; 3439: 416-422. 

Moazzen zadeh M, Tabatabaei SA, Hasani 

Mahmouei H. Investigation the causes of acid 

mine drainage copper production in Darrehzar 

mine and its control methods. In: 6nd 

Congress Health and Safety Executive in 

mining; 2006; Tehran, Iran. 

Moeen Vaziri H. history of Iran magmatism. 2nd 

ed. Tehran: Tarbiat Moallem University Press; 

2004. 

Mokhtari Z, Seifi A. Detection of Hydrothermal 

Alteration Zones Using ASTER Remote 

Sensing Data in Turquoise mine of Neyshabur. 

Journal of Analytical and Numerical Methods 

in Mining Engineering 2021; 11(28): 1-22. 

Nateghi A, Hezarkhani A. (2013). Fluid inclusion 

evidence for hydrothermal fluid evolution in 

the Darreh-Zar porphyry copper deposit, Iran. 

Journal of Asian Earth Sciences 2013; 73: 

240–251. 

Navarro Torres VF, Aduvire O, Singh RN. 

Assessment of natural attenuation of acid 

mine drainage pollutants in El Bierzo and 

Odiel basins: A case study. Journal of Mining 

& Environment 2011; 2: 78-85. 

Ololade O, Annegarn HJ, Limpitlaw D, Kneen 

MA. Land-use/cover Mapping and Change 

Detection in the Rustenburg Mining Region 

Using Landsat Images. In: IGARSS; 2008; 

Boston, MA, USA. 

Parsapoor A. the study of petrography, petrology 

and hydrothermal alteration of Darrehzar 

copper porphyry deposits and relation 

between rock units with copper and 

molybdenum ore (Kerman, southeast Iran) 

[Dissertation]. Isfahan: University of Isfahan; 

2014. 

Paterson N. Remote Mapping of Mine Wastes. In 

edited by A.G. Gubins. Proceedings of 

Exploration 97: Fourth Decennial 

International Conference on Mineral 

Exploration; 1997; 905–916. 

Petropoulos GP, Partsinevelos P, Mitraka Z. 

Change detection of surface mining activity 

and reclamation based on a machine learning 

approach of multi-temporal Landsat TM 

imagery. Geocarto International 2012; iFirst 

article: 1-20. 

Prakash A, Gupta RP. Land-use mapping and 

change detection in a coal mining area a case 

study in the Jharia coalfield. Int. J. Remote 

Sensing. 1998; 19(3): 391-410. 

Ranjbar H, Hassanzadeh H, Torabi M, Ilaghi O. 

Integration and analysis of airborne 

geophysical data of the Darrehzar area, 

Kerman Province, Iran, using principal 

component analysis. Journal of Applied 

Geophysics 2001; 48: 33-41. 

Ranjbar H, Honarmand M, Moezifar Z. 

Application of the Crosta technique for 

porphyry copper alteration mapping, using 

ETM+ data in the southern part of the Iranian 

volcanic sedimentary belt. Journal of Asian 

Earth Sciences 2004; 24: 237–243. 

Research System Inc. ENVI User's Guide. 

Version 4.1.; 2004. 

Resmini RG, Kappus ME, Aldrich WS, Harsanyi 

JC, Anderson M. Mineral mapping with 

hyperspectral digital imagery collection 

experiment (HYDICE) sensor data at Cuprite, 

Nevada, USA. Int. J. Remote. Sens. 1997; 18 

(7), 1553–1570. 

Rowan LC, Hook SJ, Abrams MJ, Mars JC. 

Mapping Hydrothermally Altered Rocks at 

Cuprite, Nevada, Using the Advanced 

Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), A New Satellite-



A. Seifi, M. Hosseinjanizadeh,·H. Ranjbar, M. Honarmand                         Journal of Geological Remote Sensing 2023 1(1);38-55  

 

54 
 

Imaging System. Economic Geology 2003; 

98: 1019–1027. 

Sadeghi B, Khalajmasoumi M, Afzal P, 

Moarefvand P, Bijan Yasrebi A, Wetherelt A, 

Foster P, Ziazarifi A. Using ETM+ and 

ASTER sensors to identify iron occurrences in 

the Esfordi 1:100,000 mapping sheet of 

Central Iran. Journal of African Earth 

Sciences 2013; 85: 103–114. 

Schroeter L, Gläβer C. Analyses and monitoring 

of lignite mining lakes in Eastern Germany 

with spectral signatures of Landsat TM 

satellite data. International Journal of Coal 

Geology 2011; 86: 27-39. 

Seifi A, Esmaeily A, Mokhtari Z. A new hybrid 

method for epithermal gold exploration using 

multi-sensor satellite data in Sistan and 

Baluchestan Province (Iran). Ore Geology 

Reviews 2021; 138: 104357. 

Seifi A, Hosseinjanizadeh M, Ranjbar H, 

Honarmand M. Detection of acid drainage 

using Landsat 8 image, Sarcheshmeh and 

Darrehzar mines, Kerman Province. In: 

Proceedings of the 34th National and the 2nd 

International Geosciences Congress; 2016; 

Tehran, Iran. 

Seifi A, Hosseinjanizadeh M, Ranjbar H, 

Honarmand M. Investigation acid mine 

drainage minerals using spectral 

characteristics and satellite images processing 

of Landsat- 8, a case study: Darrehzar mine, 

Kerman province, Iran. Journal of 

Environmental Studies 2017; 43(1): 31–43. 

Seifi A, Hosseinjanizadeh M, Ranjbar H, 

Honarmand M. Identification of Acid Mine 

Drainage Potential Using Sentinel 2a Imagery 

and Field Data. Mine Water and the 

Environment 2019a; 38: 707–717. 

Seifi A, Hosseinjanizadeh M, Ranjbar H, 

Honarmand M. Visible-Infrared spectroscopy 

and chemical properties of water in mining 

area. Water Science & Technology 2019b; 

80(9): 1612–1622. 

Settle J, On constrained energy minimization and 

the partial unmixing of multispectral images. 

IEEE transactions on geoscience and remote 

sensing, 2002; 40(3), 718-721.  

Shahriari H, Ranjbar H, Honarmand M. Image 

Segmentation for Hydrothermal Alteration 

Mapping Using PCA and Concentration–Area 

Fractal Model. Natural Resources Research 

2013; 22(3): 191-206. 

Singh B, Wilson MJ, Mchardy WJ, Fraser AR, 

Merrington G. Mineralogy and chemistry of 

ochre sediments from an acid mine drainage 

near a disused mine in Cornwall, UK. Clay 

Minerals 1999; 34: 301-317. 

Townsend PA, Helmers DP, Kingdon, CC, 

McNeil BE, de Beurs KM, Eshleman KN. 

Changes in the extent of surface mining and 

reclamation in the Central Appalachians 

detected using a 1976–2006 Landsat time 

series. Remote Sensing of Environment 2009; 

113: 62-72. 

Vali A, Mokhtari F, Moayyeri M, Amini A. 

Anteropogeomorphology of mines landscape 

(Case Study: Crushed Lashtar). Quantative 

Geomorphology Researches 2014; 2: 104-

116. 

Valizadeh Kamran K, Khorrami B. (2018). 

Change Detection and Prediction of Urmia 

Lake and its Surrounding Environment 

During the Past 60 Years Applying Geobased 

Remote Sensing Analysis. The International 

Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences; 

2018; Istanbul, Turkey. 

Wen X, Yang X. A New Change Detection 

Method for Two Remote Sensing Images 

based on Spectral Matching. In: International 

Conference on Industrial Mechatronics and 

Automation; 2009 15-16 May; Chengdu, 

China. DOI: 10.1109/ICIMA.2009.5156567. 



A. Seifi, M. Hosseinjanizadeh,·H. Ranjbar, M. Honarmand                         Journal of Geological Remote Sensing 2023 1(1);38-55  

 

55 
 

Yazdanpanah L. Analysis of geochemical data in 

Darrehzar copper deposit: using GIS software 

and remote sensing [Dissertation]. Kerman: 

Shahid Bahonar University; 2011. 

Yucel DS, Yucel MA, Baba A. Change detection 

and visualization of acid mine lakes using time 

series satellite image data in geographic 

information systems (GIS): Can (Canakkale) 

County, NW Turkey. Environ Earth Sci. 2014; 

72: 4311-4323.  

Zabcic N. Derivation of surface pH-values based 

on mineral abundances over pyrite mining 

areas with airborne hyperspectral data 

(Hymap) of Sotiel-Migollas mine complex 

[Dissertation]. Spain: University of Alberta; 

2008.  

Zhang X, Pazner M, Duke N. Lithologic and 

mineral information extraction for gold 

exploration using ASTER data in the south 

Chocolate Mountains (California). ISPRS 

Journal of Photogrammetry & Remote 

Sensing 2007; 62(4): 271–282. 

 
 


