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Rock outcrops are generally covered by vegetation and the Quaternary deposits, so 

their enhancement on the satellite imagery can be impeded, and the identification 

of pixels of rock outcrops be a challenging task for field sampling in 

lithogeochemical surveys. Therefore, in order to map outcrops of different rock 

types, it is required, first, to estimate the distribution of vegetation and the 

Quaternary deposits as the major step for field sampling in lithogeochemical 

surveys. This paper is an attempt to map outcrops of different rock types as a 

prerequisite for lithogeochemical sampling surveys in Kowli-kosh metamorphic 

complex in Sanandaj-Sirjan zone (SSZ). To evaluate the efficacy of this approach, 

geochemical anomalies of Cu, Au, and Fe in samples collected from enhanced rock 

outcrops of a metamorphosed area were analyzed. In order to obtain the objectives 

of study, we firstly utilized the maximum likelihood (ML), soil-adjusted vegetation 

index (SAVI), and mixture-tuned matched filtering (MTMF) methods on reflective 

bands of advanced space-borne thermal emission and reflection radiometer 

(ASTER) to map the Quaternary deposits, vegetation, and lithological units in 

Kowli-Kosh metamorphic complex, SW Iran. Pixels matched to lithological units 

were identified wherever the matched filter (MF) scores were > 0.65. These areas 

were then cross-tabulated with vegetation and Quaternary maps to differentiate the 

representative areas of rock outcrops. A grid network was subsequently generated 

and overlaid on the map of rock outcrops, and the rock chip samples for 

lithogeochemical analysis were collected from cells containing more than 15 pixels 

of rock outcrops. The spatial distribution analysis of rock types and the 

geochemical statistics showed that there is a strong relationship between outcrops 

and the anomalies of the desired elements. It was concluded that the approach 

introduced by this study improved  the potentials usage of ASTER data in mapping 

of the areas covered by vegetation and Quaternary deposits. This approach help 

inobtaining a perspective on conducting lithogeochemical sampling surveys in 

order to manage cost-effective exploration operations in such areas. 

 

                                                           
*Corresponding author. 

Email: tangestani@susc.ac.ir 

https://doi.org/10.48306/jgrs.2023.364670.1000 

Received 6 October 2022; Received in revised form 25 January 2023; Accepted 29 May 2023 

Available online August 2023 

©2023 Graduate University of Advanced Technology, Kerman, Iran. This is an open article under the CC BY-NC-SA 4.0 

license (https://creativecommons.org/licenses/by-nc-sa/4.0/) 

Journal of Geological Remote Sensing 

Journal homepage: https:// jgrs.kgut.ac.ir 

https://doi.org/10.48306/


M. H. Tangestani, S. Shayganpour                                                                             Journal of geolo gical Remote Sensing 2023 1(1);1-20 

 

 

1. Introduction 

An overview on the land surface of the Earth 

shows that outcrops of rocks do not form the major 

parts of it, basically due to the coverage of vegetation 

and the Quaternary sediments (Howell, 1960). In 

point of geological view, the outcrops of rock units 

allow the geologists to observe them directly, and to 

sample the bedrocks in situ, aiming the various 

disciplines such as geological studies, 

lithogeochemical analysis, and compiling the 

geological maps.  

On the other hand, lithogeochemical studies 

fundamentally seek to find out the chemical 

composition of bedrocks/rocks that are appeared at 

the ground surface (Dunlop et al., 1979). This 

primary dispersion of geochemical compositions in 

bedrock can guide the geologists to explore the 

probable exploration targets (James, 1967). 

Lithogeochemical surveys are generally performed 

through a network or during field traverses, with 

samples collected from accessible rock outcrops. 

Selection of specific rock types for sampling could 

ideally be implemented after a lithological map is 

available (Govett and Ian, 1979). Therefore, 

recognizing the spatial pattern of rock outcrops as 

well as their lithologies is crucial for conducting 

lithogeochemical sampling surveys. In this regard, 

utilizing the satellite imagery in mapping areas that 

show the highest match to lithological units, and 

these are without vegetation and soil cover, is a 

remarkable endeavor. 

When dealing with any geological field sampling 

surveys based on the processing of satellite data, it is 

evident that the Earth surface is mostly composed of 

mixed materials, among which, in landscape scales, 

the Quaternary deposits and vegetation are more 

common. These materials can directly affect 

recognizing the pixels of rock outcrops (Fraser and 

Green, 1987; Carranza and Hale, 2002; van der Meer 

et al., 2012). Meanwhile, although the forest with 

large canopies does not grow in arid and semi-arid 

climates, the growth of shrubs and rangeland can 

play an important role in preventing the 

enhancement of underneath rocks. Furthermore, 

Quaternary deposits that originate from upstream 

rocks would modify the spectral responses of pixels, 

and consequently, may affect the accuracy of 

enhanced pixels due to different spectral 

characteristics of these deposits.  

For decades, remote sensing geologists have 

produced lithology and mineral maps by the use of 

satellite data (e.g., Abdelsalam and Stern., 2000; 

Azizi et al., 2010; Ibrahim et al., 2018; Zimmermann 

et al., 2016; Rogge et al., 2014; Noori et al., 2019; 

Bolouki et al., 2020); however, displaying pixels of 

rock outcrops has been a fundamental problem so far. 

Kang et al. (2017) applied Landsat-8 images for 

accurate identifying and mapping exposed rock 

outcrops in Antarctica. Drake et al. (1999) 

successfully mapped geological features, soils, and 

vegetation by the use of spectral matching on 

AVIRIS SWIR data. Enhancement of lithologies in a 

vegetated district using the TM data of Landsat was 

implemented by Crippen and Blom (2001). They 

suggested that a significantly strong lithologic signal 

will remain after the vegetation signal is suppressed. 

Grebby et al. (2014), used Airborne Thematic 

Mapper (ATM) data to study the impact of vegetation 

on mapping rock types in Troodos ophiolite, Cyprus, 

and concluded that useful lithological information 

could be obtained by the using appropriate data 

https://link.springer.com/referenceworkentry/10.1007%2F0-387-30844-X_64#CR1_0-387-30844-X_64
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processing methods, despite the dense vegetation 

and limited spectral sampling.  

Meanwhile, the Advanced Space-borne Thermal 

Emission and Reflection Radiometer (ASTER) 

imagery (Fujisada, 1995; Abrams, 2000) with 20 

years’ history of applications in lithology and 

alteration mapping, is still the unique freely available 

satellite data with global coverage and applicable 

spectral bands for geologists (Abdeen et al., 2001; 

Rajendran et al., 2011, 2016 and 2018; Testa et al., 

2018). The improvements in spectral and spatial 

resolutions of this instrument encouraged the remote 

sensing geologists to apply them extensively for 

mineral exploration in arid to semi-arid regions. It 

measures three spectral bands in the VNIR region 

between 0.52 and 0.86 µm with 15-m spatial 

resolution, which are applicable for mapping the 

vegetation and Fe-oxides in rocks and soils. This 

sensor also measures the radiation of the short wave 

infrared (SWIR) region in six bands between 1.65 

and 2.40 µm with pixel size of 30 m. This region of 

spectrum is well-known for its capability in 

mineralogical and lithological mapping. The thermal 

infrared (TIR) radiation is also measured in five 

spectral bands between 8.12 and 11.65 µm by 

ASTER, which geologically are useful for detecting 

silica contents of rock units. These capabilities have 

already been used for exploration of different ore 

deposits and mapping of various rock types (Calvin 

et al., 2015; Rezaei et al., 2020; Khalifa et al., 2020; 

Ishagh et al., 2021; Manap and San., 2022). 

Moreover, it is approved that the multispectral 

data of ASTER can be very useful for delineating the 

interesting areas on the ground that need more 

detailed attention during the subsequent field works. 

For instance, Salem et al. (2016) presented new gold 

prospecting areas in the alteration zones at Dungash 

district, southeastern Egypt, by ASTER data. They 

applied output results of data processing as well as 

field observation and petrographic-geochemical 

studies to distinguish alterations as probable targets 

for Au exploration. Testa et al., (2018) highlighted 

rock type outcrops in the Frontal Cordillera, western 

Argentina by the use of a logical operation on the 

ASTER data. Amer et al., (2016) proved successful 

utilization of ASTER imagery for enhancements of 

sericite, calcite, and clay minerals in the Central 

Eastern Desert of Egypt.  

Review of the previously published articles 

shows that despite the various geological 

applications of ASTER data, there are lack of 

research on dealing with enhancement of vegetation- 

and soil-free rock outcrops in the literature. The rock 

outcrops without  vegetation and Quaternary 

colluvial and alluvial deposits can be representative 

locations of lithogeochemical sampling, because 

they allow identification of the spatial pattern of 

specific rock types (Kruse et al., 2003) that can 

support identifying the exploration targets before 

field observation and sampling. Such investigations 

can lead to optimizing field works and sampling 

numbers in areas covered by vegetation and 

Quaternary deposits.  

This study was an attempt to map rock outcrops 

with no vegetation- and soil coverage in order to be 

used as a guideline for lithogeochemical sampling 

surveys, aiming at exploration of Au, Cu, and Fe. 

Soil-adjusted vegetation index (SAVI), maximum 

likelihood (ML) method, and mixture tuned matched 

filtering (MTMF) algorithm were applied to map 

vegetation, Quaternary sediments, and highly 

matched pixels to the spectral characteristics of rock 
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types, respectively. The vegetation- and soil-free 

areas were then extracted through a spatial 

distribution analysis in the GIS environment, and the 

lithogeochemical sampling survey was conducted on 

them. Subsequently, the spatial relationships 

between rock type outcrops and the geochemical 

analysis results of collected samples were 

investigated. The case study is Kowli-Kosh 

metamorphic complex, south of Iran (Fig. 1), which 

consists of various schistose rocks with anomalous 

concentrations of Au, Cu, and Fe (Jafarian, 2009; 

Shahidi, 2010).  

 

2. Geology and mineralization 

The study area is part of the Kowli-kosh 

metamorphic complex in Sanandaj-Sirjan zone 

(SSZ), 200 km north of Shiraz, southern Iran (Fig. 

1). This complex is illustrated in the geological maps 

of Dehbid and Eqlid, published at a scale of 

1:100,000 (Geological Survey of Iran 2009a, b). 

Regional structures at the area show a general trend 

of NW-SE (Alavi, 1994), and the dominant 

lithologies include chlorite-epidote schist, mica 

schist, meta-diorite, meta-tuff, meta-andesite, meta-

limestone, and rhyolite (Jafarian, 2009; Shahidi, 

2010). Of interest to mineral exploration, this area 

hosts several occurrences of metallic sulfides and 

oxides, some of which contain economic quantities 

of Au, Cu, and Fe (Houshmandzadeh, 1990). The 

most important lithologic units which contain these 

anomalies are chlorite-epidote schist, mica schist, 

and volcanic rocks (Jafarian, 2009; Shahidi, 2010). 

In general, all rocks that have undergone regional 

deformation and metamorphism can be suitable host 

rocks for gold deposits (Rahmani, 2008; Jafarian, 

2009; Shahidi, 2010); however, a strong positive 

correlation has already been reported between green 

schist and meta-diorite with gold content (Rahmani, 

2008).  

Evidences of two copper-gold indices are 

observed at Zooli Valley (Fig. 1), western part of the 

study area, known as Basiran-1 and Basiran-2 

(Rahmani, 2008). The dominant lithologies 

associated with these indices include 

metamorphosed mafic rocks, mica schist, and 

chlorite schist in Basiran-1, and meta-diorite, 

chlorite schist, and meta-limestone in Basiran-2 

(Rahmani, 2008). Native gold, realgar, and scheelite 

are reported as indicators of Au mineralization at the 

area. The Cu mineralization is also approved by 

occurrences of chalcopyrite, chalcocite, pyrite, and 

malachite (Fig. 9) (Rahmani, 2008; Jafarian, 2009; 

Shahidi, 2010). Iron mineralization is extensive by 

the presence of magnetite and hematite, associated 

with Fe-hydroxides such as goethite and jarosite 

(Rahmani, 2008).  

Kowli-Kosh area is located in a high-altitude 

semi-arid climate covered by pasture and shrub (Fig. 

2) as well as small cultivated lands and gardens. 

Based on the geological maps, the Quaternary 

deposits commonly include recent clastic deposits 

with variable textures, which are the eroded 

sediments of upstream rock units (Fig. 1c). These 

sediments, as well as vegetation, partly obscure the 

rock units. 
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Fig. 1. a) geographic position of the study area in Iran; b) position of the Kowli-kosh complex in ASTER image in red 

rectangle; and c) geological map of the study area (modified from 1: 100,000 geological maps of Eqlid and Dehbid)

. 
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Fig. 2. Field photographs showing mixture of vegetation and Quaternary sediments covering a) mica schist; b) chlorite-

epidote schist and meta-diorite; c) meta-andesite; d) chlorite-epidote schist; and e) meta-limestone

.

3. Data and methods 

The ASTER data applied in this study were 

acquired in August 2001, in the level 1T. The VNIR 

and SWIR datasets of a region of interest with 827 × 

1672 pixels (Fig. 1b) were stacked to obtain a 9-

bands data set with pixel sizes resampled to 15×15 

m. 

In order to obtain the distribution map of 

vegetation- and sediment-free outcrops of rock 

types, it was first required to map the Quaternary 

deposits, vegetation, and lithology. These outcrops 

were subsequently applied for facilitating the field 

sampling surveys aiming lithogeochemical 

investigations. In this research, we proposed a 

method for facilitating the field sampling surveys 

aiming for lithogeochemical analysis. The 

geochemical concentrations of Cu, Au, and Fe in the 

collected samples were measured and were spatially 

compared with extracted outcrops of rock types. To 

obtain the objectives of this research, the following 

steps were pursued: 1) converting the raw data to 

reflectance by the use of Log Residuals technique 

(Green and Craig, 1985; Conel et al., 1987) and 

geometric correction of imagery by the use of 

topographic maps in scale of 1:25000; 2) applying 

the maximum likelihood (Isermann, 1988; Richards, 

1999) and SAVI (Huete, 1988) methods for mapping 

the Quaternary deposits and vegetation density; 3) 

spectral characterization of rock types collected in 

the field, and extraction of end-members’ spectra 

from calibrated imagery; 4) sub-pixel mapping and 

classification of lithological units using a mixture 

tuned matched filtering (MTMF) algorithm 

(Boardman, 1998); 5) extracting the vegetation- and 

sediment-free outcrops of rock types through a cross-

tabulation procedure in GIS environment (Pontius, 

2000 and 2002; Congalton and Green, 1999); 6) 

planning field survey and sampling of rock outcrops 

https://www.sciencedirect.com/science/article/abs/pii/003442578890106X#!
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in a proposed grid network for lithogeochemical 

analysis; 7) geochemical analysis of collected 

samples and estimating the anomalies of Au, Cu, and 

Fe; and 8) to investigate the relationships between 

each rock type and the anomalies of Cu, Au, and Fe; 

9) assessing the accuracy of results by the use of a 

combination of confusion matrix, Kappa coefficient, 

stuy of microscopic thin sections, and field 

observations. More important methods are described 

below in details. 

 

3.1. Maximum Likelihood  

Maximum likelihood (ML) classifier (Isermann, 

1988) determines the likelihood that a given pixel of 

an imagery belongs to a particular class, supposing 

that the distribution statistics for each class in each 

band are Gaussian. Considering the results of this 

method, each pixel is allocated to the class that 

shows the highest likelihood (Richards, 1999). 

Equation [1] reveals how the maximum likelihood 

classifier calculates the probabilities for each pixel 

of the imagery: 

[1] 

 

 

 
 

where: i is the ith class, p(ωi) is the same 

likelihood for occurrence of a class in the image, x is 

n-dimensional data in which n defines the number of 

bands, |Σi| is determinant of the covariance matrix of 

the data in a class, mi is mean vector of a class, and 

Σi-1 is inverse of the covariance matrix of a class. 

This algorithm has frequently been used by 

geologists (e.g. lvanov and Poltavchenko, 1988; 

Wester, 1991). 

In the present study, we conducted this algorithm 

on the ASTER data, during which, two classes 

including alluvial and colluvial deposits were 

introduced as training areas to the algorithm. Each 

deposit type was defined in a total of 380 pixels 

according to geological map (Fig. 1). The selected 

pixels were randomly subdivided into 2/3 training, 

and 1/3 testing pixels. The mapping results were 

assessed by investigating their distribution in 

geological maps and through the field observations. 

 

3.2. Soil-Adjusted Vegetation Index  

The soil-adjusted vegetation index (SAVI) 

method (Huete, 1988) was used to map the 

vegetation densities. Based on the logic of this 

method, vegetation index values can be influenced 

by the reflectance of red and near-infrared light, 

where the area is covered by a combination of low 

vegetation (i.e., < 40%) and the soil. When applying  

 

SAVI [Eq. 2] in areas possessing dense 

vegetation, parameter L is 0; whereas in barren lands, 

L=1. However, in most geographical conditions, 

L=0.5 works well (Johnson, 1998) and is the default 

value, which is also applied in the present study.  

 

SAVI = 
𝑏3− 𝑏2

𝑏3+ 𝑏2+𝐿
 × (1+L)                    [2] 

  

In this equation, b3 and b2 are reflectances in 

calibrated bands 3 and 2 of ASTER. The output 

results of SAVI method were divided into 4 classes 

based on the density of vegetation. 

 

3.3. Mixture tuned matched filtering  

 The general concept of Mixture Tuned Matched 

Filtering (MTMF) algorithm is based on partial 

unmixing of pixels in the imageries through 
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estimation of the degree of match of a given pixel to 

a reference spectrum (Boardman, 1998). This 

method can also approximate the sub-pixel 

abundances of end-members, which, in fact, are the 

surface features that their spectra are introduced to 

the algorithm. Matched filtering (MF) score in the 

MTMF algorithm shows a degree of match between 

the target spectra and the spectra of pixels in the 

original image, so that score of one is a perfect 

match. The MTMF algorithm is frequently applied 

by geologists (e.g. Rowan and Mars, 2003; Zhang et 

al., 2007; Tayebi et al., 2015). 

The spectra of chlorite-epidote schist, mica 

schist, meta-limestone, meta-diorite, and meta-

andesite were extracted from the ASTER imageries. 

These were then compared with the corresponding 

spectra extracted from the spectral libraries and the 

spectra of collected rock samples, measured at the 

Central Laboratory of NIRS (Near-infrared 

spectroscopy) instrument which is active in the 

Central Laboratory of Shiraz University, Shiraz, 

Iran, to ascertain their spectral characteristics. The 

approved image spectra of rock types were 

introduced to the algorithm as references, and the 

degree of match of lithologies with the reference 

spectra was assessed. Although the MTMF 

algorithm is capable of estimating the sub-pixel 

quantity of the target materials, in this study, we 

interpreted the results of this technique for 

recognizing the highest correspondences of 

lithological units only. 

 

3.4. Spatial distribution analysis and field 

sampling  

Combination of two maps obtains a new map that 

can be quantitatively studied for finding the 

correspondence between them with summary 

statistics based on the subsets defined by spatial or 

thematic information (Bonham-Carter, 1994). 

Pontius (2004) evaluated the total change of land 

classes by the use of cross-tabulation matrix. 

Shalaby and Tateishi (2007) applied a cross-

tabulation procedure for post-classification change 

detection on outputs of Landsat in the Northwestern 

coast of Egypt. Also, Henriques et al. (2015) applied 

cross-tabulation to investigate the role of lithology 

on the pattern of landslides.  

 In order to achieve the spatial relationships of 

vegetation, Quaternary deposits, and lithology maps, 

they were first converted to the vector format. These 

vector maps were then spatially integrated by the use 

of overlay operation in a GIS environment. The 

spatial distribution interpretation of these vector 

maps was conducted through a cross-tabulation 

procedure to find the vegetation- and sediment-free 

outcrops of various rock types. 

Subsequently, a 1 × 1 km grid network was 

generated for the study area and was overlaid on the 

map of rock outcrops (Fig. 8). Field sampling for 

lithogeochemical analysis of Cu, Au, and Fe was 

then conducted on those grid cells which contained 

more than 15 pixels of rock outcrops. In cases that 

more than one lithological unit outcropped in a 1 × 1 

km grid cell, sampling was carried out on both 

outcrops and altered areas, probable mineralized 

zones, and wherever the silicate veins were 

observed. Thus, 118 chip samples were collected and 

were geochemically analyzed in Zarazma Company, 

Tehran, Iran, by ICP-OES and Fire assay methods. 
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4. Results and discussion 

4.1. Mapping Quaternary deposits and 

vegetation  

Classes of Quaternary deposits were mapped by 

the use of maximum likelihood classification method 

and the accuracy of outputs was evaluated by the 

confusion matrix and Kappa statistics. The testing 

areas for Quaternary deposit types were selected 

randomly based on the geological map and the 

Google Earth imagery. The overall accuracy and 

Kappa coefficient were estimated 93.18% and 0.87, 

respectively. Moreover, the visual comparison of 

processed imagery to the geology map of the study 

area represented a favorable conformity. However, 

considering the scale of geology map (1:100,000) 

comparing to the pixel size of the applied imagery, 

more detailed and extensive areas were enhanced 

through the image processing. Finally, the output 

classes were dissolved and a homogenous 

information layer (Fig. 3), namely “Quaternary 

deposits”, was generated.  

 

 Fig. 3. Quaternary deposit map produced by combination of output classes of maximum likelihood algorithm 

The SAVI algorithm mapped vegetation 

density of the area in a range of -0.4 to +0.4 

which was qualitatively reclassified into “very 

low”, “low”, “moderate”, and “high” densities 

(Fig. 4). The reclassified map showed dominant 

vegetation densities for low and moderate 

classes (57.34% and 29.44%, respectively). It 

was also observed that pixels with high density 

of vegetation corresponded with the gardens and 

a combination of grasses and trees grown in 

stream lines.                     
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Fig. 4. Vegetation density classification, produced by SAVI method; the density classes are presented in the legend. 

 

4.2. Mapping lithological units  

The resampled spectra of meta-andesite, 

meta-diorite, chlorite-epidote schist, mica 

schist, and meta-limestone to the ASTER bands, 

as well as ASTER-derived spectra of similar 

rock types, are shown in Figure 5. The spectra of 

meta-diorite display strong absorption bands 

near 0.69 μm and 0.87μm due to the iron 

electronic processes (Clark 1990; Hunt 2017) 

and near 2.34μm for Fe-Mg-OH vibrations 

(Clark et al. 1993; Gupta 2017); which 

correspond with bands 2, 3, and 8 of ASTER 

(Fig. 5a). Meta-andesite shows an absorption 

feature near 0.5 μm that could be attributed to 

iron electronic processes (Clark 1990; Hunt 

2017), and near 2.1 μm, 2.25 μm, and 2.34 μm 

due to vibrational modes of Al-OH, Mg-OH and 

Fe-OH, respectively (Clark et al. 1993; Gupta 

2017). Chlorite-epidote schist displays spectral 

absorption features near 2.25 μm and 2.34 μm, 

due to vibrational modes of Fe-OH and Mg-OH 

(Clark et al. 1993; Gupta 2017). The image 

spectra of this rock type show major absorption 

features in bands 2 and 8 of ASTER (Fig. 5-c). 

Reflectance spectra of mica schist shows an 

absorption feature near 0.5 μm due to iron 

electronic processes (Clark 1990; Hunt 2017) 

and near 2.21μm, attributed to hydroxyl and Al-

OH. The major absorption features of this rock 

type are shown in bands 2 and 6 of the ASTER 

(Fig. 5-d). The diagnostic absorption feature of 

meta-limestone is near 2.31μm (band 8 in Fig. 5-

e) because of the vibrational mode of CO3 (Clark 

1990; Hunt 2017). The ASTER-derived spectra 

of dominant rock types were input as end-

member references to the MTMF algorithm and 

their degree of match to the applied bands was 

mapped accordingly.

Vegetation density 
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Fig. 5: The spectra of rock types extracted from the VNIR-SWIR bands of ASTER as well as their 

 

measured spectra, resampled to similar bands; 

important absorption features are shown with 

arrows. 

The matched filter scores of rock units were 

produced and pixels with scores of > 0.65 for each 

rock type were selected to show the spatial 

distribution of the desired lithology. These pixels 

were then demonstrated in different colors on a gray 

scale image (Fig. 6). The discriminated rock types 

coincided well with their relevant outcrops at 

1:100.000 geological maps and the evidences 

collected in the field and microscopic studies of thin 
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sections. However, limited mapped outcrops in 

figure 6, comparing to the geology map (Fig. 1c), is 

due to the fact that these pixels only represent the 

matched filter scores > 0.65 for the relevant rock 

types. 

 

Fig. 6. Fraction maps for matched filter scores more than 0.65 of mica schist, meta-diorite, chlorite-epidote schist, meta-

limestone, and meta-andesite, demonstrated on a gray image of ASTER. 

 

4.3. Spatial distribution analysis of 

lithology, vegetation, and Quaternary 

deposits 

The vegetation- and soil-free outcrops of rock 

units (Fig. 7) were extracted using spatial 

distribution analysis of vegetation, Quaternary 

deposits, and lithology maps through a cross-

tabulation procedure in GIS. The study area 

dominantly consists of Quaternary deposits 

(60.56%; 129 km2) which are partly covered by 

rangelands with low and moderate densities. The 

maximum cross coverage of lithologies is occurring 

in low-vegetation districts (29.52% of total area), 

which means that pixels of lithologies are typically 

enhanced in areas that the density of vegetation is 

low. Furthermore, the cross coverage of lithologies 

with high-vegetation areas is only 4.46%, which 

means that only 0.58% of lithology pixels are 

covered by high-density rangeland. On the other 

hand, results of MTMF revealed that the highest 

distribution of lithologies belong to chlorite-epidote 

schist (10.33 km2), while the minimum spatial 

distribution belongs to meta-limestone, covering 

1.31 km2 of the study area.  
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Fig. 7: Spatial distribution of vegetation- and soil-free outcrops of: a) chlorite-epidote schist, b) mica schist, c) meta-

andesite, d) meta-limestone, and e) meta-diorite. 

 

4.4. Relationships between rock type 

outcrops and geochemical anomalies  

The objective of this part of the study was to 

investigate the lithogeochemical anomalies for Fe, 

Cu, and Au, and identifying their relationships with 

vegetation- and soil-free outcrops of different rock 

types. 

The study area was gridded, with one square 

kilometer cell size in ArcGIS and rock samples were 

collected from outcrops that were extracted in the 

previous step. This survey was conducted on those 

cells that contained more than 15 pixels of rock 

outcrops (Fig. 8); thus, representative rock samples 

were collected from 118 cells.  
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The lowest abundances of Au, Cu, and Fe were 

1.1 ppb, 384 ppm, and 20427 ppm, respectively and 

their highest concentrations were 250 ppb, 2.7%, and 

87999 ppm. Analyzing the spatial relationships 

between rock type outcrops, and the concentrations 

measured geochemically for the rock samples 

showed anomalous abundances (but not 

economically valuable) of Au, Cu, and Fe in 44, 73, 

and 37 samples, respectively.  

Results also showed that Au anomalies are 

basically occurring in meta-diorite, chlorite-epidote 

schist, and mica schist, while Cu anomalies are 

dominantly revealed in meta-diorite. Moreover, Fe 

was more highly occurring in outcrops of meta-

andesite and mica schist. The spatial correlation 

between rock outcrops and the geochemical 

anomalies is well distinguished in Cu-Au indications 

of Basiran-1 and Basiran-2 (Fig. 8) which are 

occurring in outcrops of chlorite-epidote schist and 

meta-diorite, respectively. 

Field observations in outcrops showed 

mineralization evidences such as quartzite and 

malachite veins as well as hematite deposits, and the 

petrographic investigations approved the occurrence 

of chlorite, calcite, quartz, and sericite. Furthermore, 

polished thin sections of similar samples showed 

opaque and ore minerals, such as pyrite, 

chalcopyrite, magnetite, and hematite (Fig. 9).

 

 

Fig. 8: 1 × 1 km grid network overlaid on the pixels with rocks exposure and the sampled cells for lithogeochemical 

analysis 
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Fig. 9. Field observation of a) silica vein and alteration of schist; b) occurrences of chalcopyrite malachite, and magnetite; 

c) microscopic pictures of Cu and Fe mineralization, Ccp: Chalcopyrite, Hem: Hematite, Py: Pyrite, and Gal: Galena. 
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5. Summary and conclusions 

This study investigated the potential of ASTER 

data to optimize rock sampling surveys aiming 

lithogeochemical investigations in areas with limited 

outcrops of rocks due to vegetation and Quaternary 

sediment covers. Soil-adjusted vegetation index, 

maximum likelihood, and mixture tuned matched 

filtering methods were applied to map vegetation, 

Quaternary sediments, and lithological units, 

respectively. MF scores of output pixels in MTMF 

algorithm were used to identify the degree of match 

to the spectra of lithologies, thus the values > 0.65 

were considered as a desired match for each rock 

type.  

Spatial distribution analysis on vegetation, 

Quaternary sediment, and lithology maps obtained 

outcrops of rock types lacking the effective 

concentrations of vegetation and/or Quaternary 

deposits. The pixels of outcrops were then used to 

govern the sampling surveys aiming 

lithogeochemical prospecting for Au, Cu, and Fe. 

This, effectively delineated favorable from 

unfavorable areas in field observations and provided 

an objective sampling scheme. The sampling sites 

were chosen from cells of a grid network containing 

acceptable numbers of pixels of rock outcrops. 

Geochemical analysis of samples collected from 

outcrops led to investigating the spatial relationships 

between the concentrations of Au, Cu, and Fe, and 

the rock outcrops being sampled. It showed that 

anomalous concentrations of these elements 

corresponded to meta-diorite, chlorite-epidote schist, 

and mica schist. 

It is concluded that the approach introduced by 

the current study leads to a more improved 

discernment of the mapping potentials of ASTER 

data in areas where rock units are covered by 

vegetation and Quaternary deposits. This approach 

not only helps the geologists to manage their field 

sampling surveys, but also saves cost and time in 

lithogeochemical exploration projects and 

investigating the spatial relationships between rock 

outcrops and the anomalies of desired elements. 
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